微悬臂是原子力显微镜(AFM)关键组成部分之一,通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力。对于一般的形貌成像,探针尖连续(接触模式)或间断(轻敲模式)与样品接触,并在样品表面上作光栅模式扫描。通过计算机控制针尖与样品位置的相对移动。当有电压作用在压电扫描器电极时,它会产生微量移动。根据压电扫描器的精确移动,就可以进行形貌成像和力测量。原子力显微镜(AFM)设计可以有所不同,扫描器即可以使微悬臂下的样品扫描,也可以使样品上的微悬臂扫描。原子力显微镜(AFM)压电扫描器通常能在(x,y,z)三个方向上移动,由于扫描设计尺寸和所选用压电陶瓷的不同,扫描器Zui大扫描范围x、y轴方向可以在500nm~125μm之间变化,垂直z轴一般为几微米。好的扫描器能够在小于1Å尺度上产生稳定移动。
通过在样品表面上扫描原子力显微镜(AFM)微悬臂(或使微悬臂下的样品移动)并且记录微悬臂的形变,可以测量样品表面的起伏高度。将样品的局域起伏高度对应探针尖的水平位置绘图,即可得到样品表面的三维形貌图像。利用轻敲模式技术,测量振荡微悬臂的振幅或相位变化,也可以对样品表面进行成像。
摩擦力显微镜(LFM)是在原子力显微镜(AFM)表面形貌成像基础上发展的新技术之一。材料表面中的不同组分很难在形貌图像中区分开来,而且污染物也有可能覆盖样品的真实表面。LFM恰好可以研究那些形貌上相对较难区分、而又具有相对不同摩擦特性的多组分材料表面。
图1 摩擦力显微镜扫描及力检测示意图 |
图1示出了LFM扫描及检测的示意图。一般接触模式原子力显微镜(AFM)中,探针在样品表面以X、Y光栅模式扫描(或样品在探针下扫描)。聚焦在微悬臂上的激光反射到光电检测器,由表面形貌引起的微悬臂形变量大小是通过计算激光束在检测器四个象限中的强度差值(A+B)-(C+D)得到的。反馈回路通过调整微悬臂高度来保持样品上作用力恒定,也就是微悬臂形变量恒定,从而得到样品表面上的三维形貌图像。而在横向摩擦力技术中,探针在垂直于其长度方向扫描。检测器根据激光束在四个象限中,(A+C)-(B+D)这个强度差值来检测微悬臂的扭转弯曲程度。而微悬臂的扭转弯曲程度随表面摩擦特性变化而增减(增加摩擦力导致更大的扭转)。激光检测器的四个象限可以实时分别测量并记录形貌和横向力数据。
LFM是检测表面不同组成变化的SFM技术。它可以识别聚合混合物、复合物和其他混合物的不同组分间转变,鉴别表面有机或其他污染物以及研究表面修饰层和其他表面层覆盖程度。它在半导体、高聚物沉积膜、数据贮存器以及对表面污染、化学组成的应用观察研究是非常重要的。LFM之所以能对材料表面的不同组分进行区分和确定,是因为表面性质不同的材料或组分在LFM图像中会给出不同的反差。例如,对碳氢羧酸和部分氟代羧酸的混合LB膜体系,LFM能够有效区分开C-H和C-F相。这些相分离膜上,H-C相、F-C相及硅基底间的相对摩擦性能比是1:4:10。说明碳氢羧酸可以有效提供低摩擦性,而部分氟代羧酸则是很好的抗阻剂。
不仅如此,LFM也已经成为研究纳米尺度摩擦学-润滑剂和光滑表面摩擦及研磨性质的重要工具。为研究原子尺度上的摩擦机理,Mate等和Ruan、Bhushan对新鲜解离的石墨(HOPG)进行了表征。HOPG原子尺度摩擦力显示出高定向裂解处与对应形貌图像具有相同周期性(图5.2a),然而摩擦和形貌图像中的峰值位置彼此之间 发生了相对移动(图5.2b)。利用原子间势能的傅里叶公式对摩擦力针尖和石墨表面原子间平衡力的计算结果表明,垂直和横向方向的原子间力Zui大值并不在同一位置,这就是观察到横向力和对应形貌图像中峰谷移动的原因。同时,所观察到的摩擦力变化是由样品与LFM针尖间内在横向力变化引起的,而不一定是原子尺度粘附-滑移过程造成的。对HOPG在微米尺度上进行研究也观察到摩擦力变化,它们是由于解离过程中结构发生变化引起的。解离的石墨表面虽然原子级平坦,但也存在线形区域,该区域摩擦系数要高近一个数量级。TEM结果显示这些线形区域包括有不同取向和无定形碳的石墨面。
另一关于原子尺度表面摩擦力特征研究的重要实例是云母表面。利用LFM系统研究了氮化硅针尖与云母表面间的摩擦行为,考察了摩擦力与应力、针尖几何形状、云母表面晶格取向和湿度等因素之间的对应关系。云母表面微观摩擦系数与扫描方向、扫描速度、样品面积、针尖半径、针尖具体结构以及高于70%的湿度变化无关。然而,针尖大小和结构以及湿度又会影响云母样品表面摩擦力的绝对值大小。此外,应力较低时,摩擦力与应力之间有非线性关系,这是由于弹性形变引起了接触面积变化。利用LFM对边界润滑效应的研究已有报道。LB膜技术沉积的花生酸镉单层与硅基底相比,摩擦力显著下降了1/10,而且很容易观察到膜上的缺陷。具有双层膜高度的小岛被整片移走。如果设定岛的大小为针尖与之真实接触面积A,已知移动岛的横向力为FL,则能够确定出膜的剪切强度τ=FL/A。
虽然LFM对所研究体系的化学性质只能提供有限的信息,但作为LFM新应用而发展起来的化学力显微镜(CFM)技术,却具有很高的化学灵敏性。通过共价结合修饰有机单层分子后的力显微镜探针尖,其顶端具有完好控制的官能团,能够直接探测分子间相互作用并利用其化学灵敏性来成像。这种新的CFM技术已经对有机和水合溶剂中的不同化学基团间的粘附和摩擦力进行了探测,为模拟粘附力并且预测相互作用分子基团数目提供了基础。一般来讲,测量得到的粘附力和摩擦力大小与分子相互作用强弱的变化趋势是一致的。充分理解这些相互作用力,能够为合理解释不同官能团以及质子化、离子化等过程的成像结果提供基础。Frisbie等利用一般的SFM,改变针尖的化学修饰物质,对同一扫描区间进行扫描得到反转的表面横向力图像。这一研究开拓了侧向力测量的新领域,可以研究聚合物和其他材料的官能团微结构以及生物体系中的结合、识别等相互作用。
随着SFM技术及其应用的不断发展,在SFM形貌成像基础上发展起来多种新的特殊SFM技术。这些技术利用不同的表面性质,能够很好地区分开在形貌上差别很小或是材料表面上难以检测到的不同组分。
力调制(force modulation)成像是研究表面上不同硬度(刚性)和弹性区域的SFM技术。可以验明复合物、橡胶和聚合混合物中不同组分间的转变,测定聚合物的均匀性,成像硬基底上的有机材料,检测集成电路上的剩余感光树脂以及验明不同材料的污染情况等。
图5.3给出了力调制成像示意图。使用力调制技术,探针在扫描的垂直方向有一小的振荡(调制),比扫描速度快很多。样品上的作用力大小被调制在设置点附近,这样样品上的平均作用力同简单接触模式是相等的。当探针与样品接触时,表面阻止了微悬臂的振荡并引起它的弯曲。在相同作用力条件下,样品刚性区域的形变要比柔性区域小很多。也就是说, 对于垂直振荡的探针,刚性表面对其产生更大的阻力,随之微悬臂的弯曲就较大。微悬臂形变幅度的变化就是对表面相对刚性程度的测量。形貌信息(直流或非振荡形变)与力调制数据(AC或振荡形变)是同时采集的。
早期的力调制是在压电扫描器z方向加一调制信号来诱导垂直振荡。这项技术虽然得到广泛应用,但也存在一些缺点。额外高频调制信号加到压电扫描器,能激发扫描器的机械共振,这有可能降低形貌和力调制图像的质量。新发展的力调制系统包含一个额外的压电调制控制器来分别独立调制针尖位置,减少了扫描器共振的乱真激发。结合先进的Interleave扫描技术,力调制技术对样品刚性的鉴别具有相当高的灵敏度,并且减少了调制和形貌中假象存在的可能性。
使用力调制技术在那些形貌特征差别不明显的表面上,进行表面相对弹性的观察研究是很有意义的。已有人将力调制技术应用到聚环氧乙烷和聚苯乙烯膜的定域弹性测量,以及对它们的嵌段膜组分进行分析的研究。力调制技术在聚合物、半导体、材料组成和其他领域有着很大的应用前景。
相位成像(phase imaging)技术的发展极大地促进了原子力显微镜(AFM)轻敲模式的应用。可提供其他SFM技术所不能揭示的,关于表面纳米尺度的结构信息。它是通过轻敲模式扫描过程中振动微悬臂的相位变化来检测表面组分、粘附性、摩擦、粘弹性和其他性质变化的。对于识别表面污染物、复合材料中的不同组分以及表面粘性或硬度不同的区域是非常有效的。同原子力显微镜(AFM)轻敲模式成像技术一样快速、简便,并具有可对柔软、粘附、易损伤或松散结合样品进行成像的优点。
轻敲模式原子力显微镜(AFM)中,微悬臂被压电驱动器激发到共振振荡。振荡振幅用来作为反馈信号去测量样品的形貌变化。在相位成像中,微悬臂振荡的相角和微悬臂压电驱动器信号,同时被EEM(extender electronics module)记录,它们之间的差值用来测量表面性质的不同(如图5.4所示)。可同时观察轻敲模式形貌图像和相位图像,并且分辨率与轻敲模式原子力显微镜(AFM)的相当。相位图也能用来作为实时反差增强技术,可以更清晰观察表面完好结构并不受高度起伏的影响。
大量结果表明,相位成像同摩擦力显微镜(LFM)相似,都对相对较强的表面摩擦和粘附性质变化很灵敏。目前,虽然还没有明确的相位反差与材料单一性质间的联系,但是实例证明,相位成像在较宽应用范围内可给出很有价值的信息。例如,利用力调制和相位技术成像LB膜等柔软样品,可以揭示出针尖和样品间的弹性相互作用。另外,相位成像技术弥补了力调制和LFM方法中有可能引起样品损伤和产生较低分辨率的不足,经常可提供更高分辨率的图像细节,提供其他SFM技术揭示不了的信息。相位成像技术在复合材料表征、表面摩擦和粘附性检测以及表面污染过程观察等广泛应用表明,相位成像将对在纳米尺度上研究材料性质起到重要作用。
SFM除了形貌测量之外,还能测量力对探针-样品间距离的关系曲线Zt(Zs)。它几乎包含了所有关于样品和针尖间相互作用的必要信息。当微悬臂固定端被垂直接近,然后离开样品表面时,微悬臂和样品间产生了相对移动。而在这个过程中微悬臂自由端的探针也在接近、甚至压入样品表面,然后脱离,此时原子力显微镜(AFM)测量并记录了探针所感受的力,从而得到力曲线。Zs是样品的移动,Zt是微悬臂的移动。这两个移动近似于垂直于样品表面。用悬臂弹性系数c乘以Zt,可以得到力F=c·Zt。如果忽略样品和针尖弹性变形,可以通过s=Zt-Zs给出针尖和样品间相互作用距离s。这样能从Zt(Zs)曲线决定出力-距离关系F(s)。这个技术可以用来测量探针尖和样品表面间的排斥力或长程吸引力,揭示定域的化学和机械性质,像粘附力和弹力,甚至吸附分子层的厚度。如果将探针用特定分子或基团修饰,利用力曲线分析技术就能够给出特异结合分子间的力或键的强度,其中也包括特定分子间的胶体力以及疏水力、长程引力等。
图5.5给出了典型力曲线(force-separation curve)特征。微悬臂开始不接触表面(A),如果微悬臂感受到的长程吸引或排斥力的力梯度超过了弹性系数c,它将在同表面接触之前,向下或向上弯曲。图中所显示的是具有Zui小长程力的情况,因此力曲线中的这个非接触部分没有显示形变。当针尖被带到非常接近样品表面而且感受到足够的吸引力,它就可能突然跳跃式地同样品接触(B)。一旦针尖同表面接触,微悬臂固定端继续接近样品时,微悬臂形变量增加(C)。如果微悬臂刚性很大,针尖就有可能刻压入表面。此时,力曲线在接触部分的形状和斜率(C)能提供关于样品表面的弹性信息。
在微悬臂受力达到预定值之后,过程将反转即微悬臂被提起后退。由于探针同表面接触过程中有可能形成粘附或化学键,引起微悬臂被粘附在样品一段距离(D),超过接近曲线中的初始接触点。而微悬臂继续被提起一段距离后,粘附就能被打破,微悬臂在表面上方重新达到自由状态(针尖和样品间没有可测量的相互作用),这是原子力显微镜(AFM)力曲线测量中的一个关键点(E)。此时可以测量出断裂键或粘附所需要力的大小。由于毛细力、未知针尖形状以及压电晶体蠕变等因素的影响,很难进一步定量针尖-样品间的相互作用。Weisenhorn等通过比较空气和水中的Zt(Zs)曲线,证明了毛细力的影响。通过将微悬臂完全浸入水中可以排除毛细力。粘附力从空气中的10-8~10-7N降到水中的10-9N。Burnham和Blackman等也使用完好表征的针尖并控制周围环境,在超薄膜上系统研究了Zt(Zs)曲线。对于一般实验,在成像前后进行力的测定,力曲线是不可替代的工具。而且在超高真空中也可以对表面能或定域弹性等性质进行测量,甚至有可能获得关于化学组成的信息。